Qing Liu, Zhuojun Meng, Antti Korpi, Eero Kontturi, Mauri A. Kostiainen
Chemical Engineering Journal, 2021, 420, 1, 129811
Abstract: Heparin is one of the most important anticoagulant agents used in clinical applications. Commercial heparin production includes an isolation from mucosa and an additional enrichment step by cationic resins. However, this process remains time-consuming while heparin is obtained in very low concentrations with the presence of macromolecular impurities, such as proteins. Therefore, an alternative with a fast, efficient and selective heparin-recovery performance is highly desirable. In this work, we utilized a biomass-derived cellulose nanocrystal colloid conjugated with cationic polyelectrolytes for heparin recovery. The high specific surface area and brush-like structure significantly increased the heparin-capture speed and efficiency under physiologically relevant conditions, which were demonstrated by the methylene blue binding assay and quartz crystal microbalance measurement.
